1 Marks are for AO1 (understanding)

- The address of the memory to be written to is placed on the address bus (by the processor);
- The data to be written is placed on the data bus (by the processor);
- The signal to write is placed on the control bus (by the processor);
- The control bus carries a clock signal (to synchronise the memory and processor);
- When the write signal is received (by the memory) on the control bus; the data from the data bus is stored; into the location identified by the address bus;

A. CPU for processor

NE. Implication that the busses are doing the 'sending' rather than 'carrying' of data / addresses / signals

MAX 2 per bus

MAX 3 if only two buses referenced

MAX 4 marks

4

2	1	2 marks are for AO1 (understanding)	2
		When data/instructions are needed/fetched they have to be transferred from memory to the processor (using the data bus); (after execution) result/data may need to be transferred back to memory (using the data bus);	
		A. responses referring to I/O controllers instead of memory	
2	2	2 marks are for AO1 (understanding)	2
		In the Harvard architecture: Instructions and data have separate buses; Instructions and data are stored in separate memories // Instructions and data have separate memory/address spaces; NE. Places, locations, registers, areas of memory Instruction word size can be different to data word size // Instruction bus width can be different to data bus width; Instructions and data can be fetched simultaneously; A. points made in reverse that state how the von Neumann architecture works MAX 2	

Qu	Pt	Marking Guidance	Marks
3	1	Marks are for AO1 (understanding)	2
		Main memory stores the <u>instructions</u> to be executed (and any data required by those instructions);	
		Main memory returns the instructions / data / value stored in a memory location (specified on the address bus) (using the data bus);	
		Program is transferred from secondary storage into main memory (if program not already in main memory) when program execution is requested;	
		Main memory stores any value / data resulting from the execution of the program;	
		MAX 2	

Qu	Pt	Marking Guidance	Marks
3	2	Marks are for AO1 (understanding)	2
		The address bus;	
		Width increased by 1;	

4	1	Mark is AO2 (apply)	4
		4294967296 // 2 ³² (bytes)	1

2

5 1 2 marks for AO1 (understanding)

Component Name	Component Number (1-5)
Address Bus	4
Data Bus	5
Main Memory	1
Processor	2
USB I/O Controller	3

1 mark: At least three components correctly numbered 2 marks: All five components correctly numbered

5 2 2 marks for AO1 (understanding)

Avoid/reduce bottleneck of single data/address bus(es) // avoid/reduce delays waiting for memory fetches; **A.** Instruction and data can be accessed simultaneously;

Avoids possibility of data being executed as code (which is one method that can be exploited by hackers) // Being able to use exclusively ROM for instruction memory prevents the program being modified/hacked; **A.** program cannot be (accidentally) overwritten (by data)

Instruction and data memory can have different word lengths;

Different technologies can be used to implement instruction and data memory;

Different quantities of instruction and data memory means that address lengths can differ between the two // memory address structures can differ;

Max 2

NE. So programs/tasks will run faster

NE. More efficient

NE. Quicker access, without further explanation

NE. Instructions and data stored in different memories

2

Question			Marks
6	1	Mark is AO1 (knowledge)	
		C The stored program concept;	1
		R. if more than one lozenge shaded	

Qu	Pt	Marking guidance	Total marks
7	1	Mark is AO1 (understanding)	4
		Address (bus);	1

Qu	Pt	Marking guidance	Total marks
7	2	Mark is AO1 (knowledge)	_
		Receiving and transmitting components share a common clock // are (continuously) synchronised by a common clock; A. receiver and transmitter A. "communicating components" without reference to receiver and transmitter Timing information transmitted within / alongside the data; Receiver and transmitter components clocks are (continuously) synchronised; A. receiver and transmitter A. "communicating components" without reference to receiver and transmitter NE. receiver and transmitter are synchronised TO. stated that synchronisation is only when data is transmitted Max 1	1

Qu	Pt	Marking guidance	Total marks
7	3	All marks are AO1 (understanding)	3
		1 mark for identifying a difference between communicating with peripherals and between components inside the computer:	
		 data has to travel further to a peripheral // data travels a shorter distance between internal components position of internal components is fixed // peripherals may be moved more data is transmitted between internal components than to peripherals // data is transmitted more frequently between internal components than to peripherals // data must be transmitted at a higher rate between internal 	
		components than to peripherals. 1 mark for giving a reason why internal buses are parallel:	
		 more data / multiple bits can be transmitted simultaneously / at the same time. A. faster transmission 	
		1 mark for giving a reason why serial is used for connecting peripherals:	
		 data skew cannot occur crosstalk cannot occur data transmission speed (on one wire) can be higher cabling is cheaper 	
		 cabling is cheaper cabling allows more flexibility over positioning cables can be longer. 	
		Award marks for differences stated in reverse, eg serial communication has slower transmission is equivalent to parallel faster transmission, parallel cabling more expensive is equivalent to serial cabling cheaper.	

Qu	Pt	Marking guidance	Total marks
7	4	All marks are AO1 (understanding)	2
		Allows processor to control / communicate with a peripheral <u>using an (I/O) port;</u>	2
		Allows peripheral to appear as a set of registers / memory locations (to the processor);	
		Translates signals / data received from a peripheral into a form that can be processed by the computer // translate signals / data sent by the processor into a form that can be used by a peripheral // converts voltages used by processor and I/O device (if they operate using different voltages);	
		Buffer data being received from a peripheral (so the processor does not have to wait for it);	
		Allows new peripherals to be added without having to redesign the processor / computer hardware;	
		Allows peripheral designers to <u>create new peripherals</u> to one common interface standard // allows peripheral designer to reduce / minimise the number of ports/connections that a peripheral needs to support;	
		To carry out some of the I/O related processing // to reduce the workload on the CPU in relation to I/O processing;	
		To check that data received from peripherals is not corrupted // performs error detection/correct on data received from peripherals;	
		Implements the protocols used by I/O devices for communication;	
		Generates an interrupt when data is ready to be transferred from an I/O device // when an I/O device needs the immediate attention of the CPU;	
		Max 2	

Qu	Pt	Marking guidance	Total marks
7	5	All marks AO2 (analyse)	
		Award 2 marks for correct answer: 128 // 2 ⁷ (gibibytes).	2
		If answer is incorrect then award 1 method mark for at least two of:	
		 including 2³⁶ in the calculation multiplying by 16 dividing by 8 dividing by 1024 // 2¹⁰ dividing by 1024 // 2¹⁰ a second time. 	
		Or award 1 method mark for one of:	
		 including 2³⁷ in the calculation multiplying by 2 (an alternative to multiplying by 16 then dividing by 8) dividing by 1048576 // 2²⁰ dividing by 1073741824 // 2³⁰ 	

Qu	Pt	Marking guidance	Total marks
7	6	Mark is AO1 (knowledge)	1
		Indicate that a memory write is occurring // cause data on the data bus to be written into the memory / RAM;	
		Transfer clock signal // synchronise operation of processor and memory / RAM;	
		Indicate the number of bits being transferred;	
		Receive transfer acknowledgement // receive acknowledgement that data received (by memory/ RAM);	
		Send signal to request use of (system) bus // issue bus request;	
		Receive signal granting use of (system) bus // receive bus grant;	
		Max 1	